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Fine-scale fishing strategies of
factory trawlers in a midwater trawl fishery
for Pacific hake (Merluccius productus)

Martin W. Dorn

Abstract: A Markov decision process model is developed to investigate the optimal scheduling of haul setting and retrievals
on a factory trawler in the Pacific hak®lérluccius productusfishery. The model was used to investigate changes in fishing
behavior during a temporary ban on night fishing in 1992. The cycle of setting the net, fishing, and retrieving the net is
modeled with different costs for each activity. The optimal controls generally consist of a bin threshold that signals the vessel
to start fishing and a catch threshold that signals the vessel to stop fishing. A range of simple “rule of thumb” strategies
generated nearly as much net revenue as the optimal control, indicating that the reward surface is flat in the region of the
optimal control. A model with diel variation in catch rates caused the vessel to adjust bin and catch thresholds through the day
to stockpile fish during the daylight hours and then to cut back on fishing at night when the catch rate is lower. With a ban on
night fishing, vessels accumulated fish to a greater extent during the day, but daily net revenue did not decline significantly.
Operational models of fishing have important applications in evaluating the consequences of management actions on the
fishing industry. Regulations that ignore the constraints and trade-offs under which fishing vessels operate may fail to achieve
their intended purposes, or may have unforseen adverse consequences.

Résumé: Nous décrivons un modele décisionnel de Markov mis au point pour déterminer la planification optimale de la mise

a l'eau et de la remontée du chalut d’un chalutier-usine dans la péche au merlu du Pakiéduedjus productus Ce

modele a servi a I'étude du changement dans les comportements de péche durant une période d’interdiction provisoire de la
péche nocturne, en 1992. Nous avons modélisé I'enchainement des opérations de mise a I'eau, de péche et de remontée du
chalut en appliquant un codt différent a chacune. En général, les régulateurs optimaux sont le seuil de péche, le bateau
commengcant & pécher lorsqu’il est atteint, et le seuil d’'arrét, ou la péche cesse. Avec diverses stratégies basées sur une simple
regle empirique, nous avons obtenu des revenus nets presque aussi élevés qu’avec le régulateur optimal, ce qui indique que la
surface de gain est plate dans la région du régulateur optimal. Dans un modele supposant des variations de prises sur 24 h, le
bateau a ajusté toute la journée les seuils de péche et d'arrét de fagon a accumuler le poisson durant le jour, la péche cessant la
nuit, période ou le taux de capture est faible. Durant la période ou la péche a été interdite la nuit, les bateaux ont accumulé

plus de poisson le jour, mais les revenus nets quotidiens n’ont pas baissé dans une mesure significative. La modélisation des
opérations de péche a des applications importantes dans I'évaluation des effets des mesures de gestion sur 'industrie
halieutique. Si les autorités de réglementation ne tiennent pas compte des contraintes et des arrangements qui caractérisent
I'exploitation des bateaux de péche, leurs objectifs pourraient n’étre pas réalisés ou leurs interventions pourraient avoir des
effets nuisibles inattendus.

[Traduit par la Rédaction]

Introduction economic aspects of fishing strategy have occasionally been

Although the use of catch per unit effort (CPUE) to monitor the
abundance of fish stocks has a long history (Smith 1988), re-
searchers have only recently begun to consider fishing behav
ior as a legitimate subject for investigation (Hilborn and
Ledbetter 1979; Gillis et al. 198%. This emerging field of
study is not as concerned with the time-honored objective of
indexing abundance as it is with gaining a better understanding
of the principles that govern fishing behavior. Much of this
research has been guided by ecological models of optimal
patch selection by animal foragers (Gillis et al. 1993), although

studied (Lane 1989). Markov decision process models (or sto-
chastic dynamic programming models) have proven to be use-
ful tools for studying fishing behavior as a particular case of a
‘general class of optimal foraging problems in behavioral ecol-
ogy (Mangel and Clark 1988). Ultimately, this research has the
promise of developing new techniques for interpreting fishing
experience in a less restrictive way to monitor the abundance
of fish populations. Operational models of fishing also have
immediate practical applications in evaluating the conse-
guences of management actions on the fishing industry. Man-
agement actions that ignore the constraints and trade-offs
under which fishing vessels operate may fail to achieve their
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guences (Gillis et al. 192).
The choices of fishing strategy available to fishers depend
on the spatial and temporal scales of their assessment of the
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Fig. 1. Temporal and spatial scales in a hierarchy of decisions made established a night closure for the 1992 hake fishery extending
by factory trawlers (adapted from Holling 1992). from midnight to 1 h after official sunrise. At-sea processors
1000 objected to the night fishing ban, contending that the night
closure disrupted fishing and processing operations. In re-
Fishery sponse to these concerns and to a reanalysis of the salmon
bycatch that suggested that bycatch rates were not significantly

higher at night, the PFMC limited the night closure to south of
T Fishing grounds 42°N latitude, leaving most of the fishing grounds open to

100+

3 fishing at night. Evidently, factory trawlers considered night
g 1T fishing important, despite lower catch rates (the catch rate at

% Traw sthet night is approximately one third of the catch rate during the
o1+ position, time day) and possibly higher bycatch rates. The reasons for this are
unclear. One possibility is that the factory trawlers were unable

1 to catch enough fish during daylight hours to keep the factory

Course while rawting operating at night, forcing shutdowns that re_duc.ed.efficiency.

oo : : ‘ 1 . [ However, not enough was known about daily .flshlng opera-

0001 001 o4 j 0 00 1000 tions on a factory trawler to evaluate whether fishing at night
was necessary for a profitable operation. To explore these hy-

Log space (km) g A
potheses required the development of new analytical tools.
Here, | present a Markov decision process model for the

1993), leaving other important aspects of fishing behavior un- scheduling of_ net setting and retrievals for a factory trawler.
examined. Recent ecological models of animal foraging have The model will be used to study how the state of the factory
emphasized the hierarchical character of decisions made bytrawler influences decision-making, as measured by the tons
foraging animals (Holling 1992). A decision hierarchy appro- of unprocessed catch in holt_jmg bms_and the amount of fish in
priate for trawlers consists of at least four levels: (1) the deci- the net when the vessel is fishing. Since factory trawlers pro-
fishing grounds on which to operate, (3) the scheduling of fish- INg vessel maximizes the landed value of catch are not
ing operations within that patch, and (4) decisions associated@Ppropriate for studying the fine-scale aspects of decision-
with fishing depth, trawling speed, and compass bearing while makm_g. Such ve_ssels are _const_ralned by their daily processing
actively fishing. Each level has a characteristic spatial and apacity, so an increase in da|Iy ca_tch abov_e a certain level
temporal scale. Decisions on which fishery to participate in are Would not result in a corresponding increase in daily produc-
made annually with a spatial scale of ~1000 km; patch selec-tion. ngt—;, | assume that the objectlve_ of ;he f_actory trawler is
eral weeks with a spatial scale of ~10-50 km (Fig. 1). fisk-neutral (Squires and Kirkley 1991).
Decision-making within a patch affects behavior over shorter  Although the major focus in this paper is on optimal strate-
intervals and smaller spatial scales. gies, recent studies on foraging behavior of animals suggest
Models with different temporal and spatial scales can shed that animals do not generally act according to predictions of
light on different aspects of fishing behavior. This paper adopts optimal foraging models and are as likely to use simple “rules
afine-scale focus to develop a model for decision-making over of thumb” to guide their foraging activities (Kareiva et al.
short periods of time by fishing vessels operating within a 1989). In addition, the reward surface is often flat, suggesting
large-scale aggregation of fish. At this level of detall, it is thata wide range of strategies can result in close to the maxi-
reasonable to suppress the spatial aspects of foraging and focugum reward. To explore these possibilities, a section of this
exclusively on time scheduling problems. On trawlers, an im- paper uses forward simulation of the fishing process to test
portant component of decision-making at this scale is the tem-simple rules of thumb against the optimal strategies.
poral scheduling of two events: setting the net, which initiates ~ The following section of this paper provides an overview
fishing, and retrieving the net, which ends fishing. A factory of the factory trawler fleet fishing for Pacific hak®lérluccius
trawler will seek to maintain the flow of fish from holding bins  productu$. In addition, the spatial features of the Pacific hake
into the factory by starting to fish when the amount of fish in population as they relate to fishing strategy are briefly de-
the bins becomes low. If the vessel waits too long to start scribed using data from the 1992 National Marine Fisheries
fishing, there is a risk that the factory will run out of fish before = Service (NMFS) acoustic survey. Additional sections develop
the next haul can be landed. If the vessel starts to fish too soonthe Markov decision process model and describe the dynamic
it may catch fish for which there is no space in the holding programming algorithm used to obtain the optimal controls.
bins. While fishing, the vessel must decide whether to continue An analysis of a simple prototype is presented, and the results
fishing or to retrieve the net with the fish already caught. If the from simulations of a vessel following the optimal control are
vessel continues to fish for too long, it may capture so many compared with at-sea observer data and some simple rules of
fish that retrieval is difficult and fish are damaged during re- thumb that mimic the more complex optimal controls. The
trieval, lowering product quality. simple prototype assumes that the random catch increment is
This research is motivated by a series of events that oc-an independent draw from a single probability distribution.
curred in 1992. Based on an analysis that suggested that chiSubsequent sections consider more complex and realistic mod-
nook salmon@ncorhynchus tshawytschiaycatch was higher  els with correlated catch increments and diel patterns in catch
at night, the Pacific Fishery Management Council (PFMC) increments. The question of whether a ban on night fishing
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significantly reduces net revenue is examined using the modelFig. 2. Spatial distribution of Pacific hake in the 1992 NMFS west

with a diel trend in the catch increments. Finally, the implica- coast acoustic survey. The vertical bars mark the 0.5-nmi trackline

tions of the model results are discussed and the major conclu-segments where the acoustic density was more than twice the

sions are briefly summarized. density that would produce a catch rate equal to the mean fishery
CPUE. The 200-m isobath is also shown.

Factory trawlers and Pacific hake

U.S. factory trawlers are a recent and influential component of
the fishing fleet off the west coast of North America. Since
1990, these vessels have accounted for more than 1.0 million
metric tons (tonnes, t) of groundfish catch per year from off the
West Coast and in Alaskan waters (NMFS 1996). The at-sea
processors in the Pacific hake fishery have onboard surimi
(minced fish flesh) production capacity and were designed to
fish primarily for walleye pollock Theragra chalcogramma

in Alaska fisheries. Generally, these vessels also have the ca  47030n
pacity to produce frozen fillet blocks and have a fish meal plant

that processes the waste from the making of surimi. Although

some fishing companies have several boats participating in the

hake fishery, most vessels are from different companies. There

are two classes of at-sea processors in the Pacific hake fishery

factory trawlers, which catch and process their own fish, and 4,
motherships, which process deliveries from catcherboats, but'g

do not fish on their own. During 1991-1995, an average of 14 & 46°00N 1
factory trawlers and five motherships participated in the fish- G
ery, with an average aggregate catch of 150 000 t. The fishery
is managed using an annual harvest guideline (i.e., quota), with

a separate allocation reserved for the shore-based processin
sector. The at-sea fishery operates as a “derby” fishery in
which all vessels compete for the fleet-wide quota. The fishery ] Newport
extends for 3—4 weeks after the annual opening date of April
15.

Factory trawlers are large vessels (mean length ~92 m),
carry a crew of 70-100, and are capable of trips lasting several
months. Between 50 and 70% of the crew is engaged in surimi
production. Several shifts keep the factory in operation
24 h/day. Midwater trawls (mean trawl opening»*85 m) are
used exclusively for Pacific hake. As is usual with targeted
midwater trawling, catches in the hake fishery are almost pure, 43°00N
with bycatch typically amounting to less than 3% of the total
catch by weight. The most common bycatch species are pe- 277w 126%0W  125%0W  126%00W 123500
lagic rockfishes (yellowtail rockfish Sebastes flavidiis Longitude
widow rockfish Sebastes entome)aand Pacific ocean perch
(Sebastes alut)isand two species of mackerel (jack mackerel
(Trachurus symmetricignd chub mackereScomber japoni-  fish in the water column and calculating the area swept by a
cug). Most of the bycatch is discarded at sea. Although the net with a 90-m horizontal opening.
bycatch of chinook salmon is low (4000—6000 fish/year), ithas  The affinity of Pacific hake for the shelf break habitat pro-
become an important concern since the listing of several westduces a fishing region that is much narrower in its east-west
coast salmon runs as endangered undeEti@angered Spe-  dimension than its north—south dimension. The north—south
cies Act range of fishing is 600 km, while the fishery is conducted over

Pacific hake form aggregations of sufficient density to sup- bottom depths ranging from 150 to 600 m, an area that is be-
port fishing activity along the continental shelf break from tween 10 and 30 km wide. Interspersed regions of high and
northern California to Vancouver Island. The 1992 NMFS low density extend along the entire coast. Certain features
acoustic survey of Pacific hake provides a synoptic view of along the shelf break support higher densities of Pacific hake
hake spatial patterns (Fig. 2). In Fig. 2, the 0.5-nautical-mile (e.g., Heceta Bank off central Oregon, Willapa and Guide can-
(nmi) acoustic transect segments were marked with a verticalyons off southwest Washington, and Juan de Fuca Canyon off
bar if the density of hake was greater than twice the density Cape Flattery), but Pacific hake aggregations are not confined
that would produce the mean catch rate in the 1993 fishery.to these areas. Between 15 and 25% of the total area between
The purpose here is to obtain a rough approximation of the 150 and 600 m contains fishable densities of Pacific hake.
spatial pattern and total area of the region where fishing would These areas of high density are not persistent features, so they
be successful. Acoustic densities were converted to expectedvill have to be detected by the vessel before they can be
catch rates by assuming that a midwater trawl captures all theexploited. From the perspective of the fishers, then, the key

49°00'N

Columbla River

44°30N
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Table 1. State dynamics on a factory trawler. while fishing. This assumption is reasonable because net telemetry on
- - a factory trawler typically includes headrope-mounted side-scan so-

Ship o Per period nar, which detects fish entering the net, and net tension indicators,

status, Decision, cost, which trigger as the net fills with fish.

S Description Uy Updated state K (Se U In each time step, the weight of fish in the bing,decreases by

1 Haul back 0 §.=2 Ky the quantity the factory processes in a time sfefn vessel state

s.= 2, the catch is added to the fish in the bins at the end of the time

= 0,%,— - ) .o
Xerr = Max(0.%—p) step. The state dynamics for the weight of fish in the ggtlepend

5 Haul back (catch Cer = G on the ship status. If the vessel is fishing, the weight of fish in the net
i increases by a catch increment, drawn from a known nonnegative
added to fish probability distribution. During a haul-back sequensg=(1, 2), the
in bins) 0 s54=3 Ksr weight of fish in the net remains constagyt,,. When the vessel is not
X1 = Max(0,%,— p) + ¢ fishing (5= 3), G = 0.
Cu1=0 The decision set ig, [0 {0, 1}, whereu, = 0 is the decision not to
3 Vessel able to fish andu,= 1 is the decision to fish. During the haul-back sequence
fish 0 S.=3 Kt (x=1, 2), the vessel is committed to completing the sequence, reduc-
Xesq = Max(0,%, — p) ing the_ decision set to tht_e single eIeme_ {0}. AIthoug_h_this
Coy =0 model is conceptually stralghtforv_vard, con5|derable_d¢tall is needed
1 s,=4 K to treat the haul-back and net-setting sequences realistically. The state
1 0 s transitions may be easier to follow as listed in Table 1.
i“*l " Bnax( X P) The state equations (Table 1) are subject to the constraigts O
_ SN X < Xmax @Nd 0= G < Craye Wherexayis the maximum capacity of the
4 Vesselfishing 0 su=1 Ksr fish bins andc,,,,, is the maximum capacity of the net. The need for a
X1 = Max(0,%—p) constraint on the weight of fish in the bins is obvious and could be
Cir1 = Gk achieved by spilling fish from a net that has been retrieved or by
1 su=4 Ki discarding some of the fish already in the bins to make more space. A
X1 = Max(0,% —p) constraint on the maximum amount of fish in the net is a reasonable
Cia1 = G + W requirement, but awkward to model. If a vessel continues to fish when

¢ = Cmax@nd catch does not increase, then a potentially viable strategy
might be to fill the net with fish and then delay the decision to haul

: L L back until some later time. In reality, this strategy would not be pos-
spatial characteristics of the hake population ga fiarrow sible. Consequently, whep=c,,,the decision set was reduced to the

elongated regi_on of potential occurrence aih)i(ansier_lt fish- single element, [J {O}so that the vessel would not have the option of
able aggregations of 15-30 km in size that can be fished mul-continuing to fish. Vessels avoid overfilling the net, and the model

tiple times. ought to include this behavior. This was done by adding a penalty for
oversize catches which will be described shortly.

Methods The random catch increments were modeled withdistribution,
which specifies the probability of a zero catch and models the nonzero

Model development values with a lognormal distribution (Pennington 1983). Although the

Markov decision process models are discrete time representations ofobustness of the use of this distribution to estimate abundance indices
continuous time processes. The sequence of events that occur at eadhom survey data has been questioned (Smith 1990)\tlistribution
time step is as follows. First, the state of the vessel is observed. Basedvas used here only for modeling. The mead\dfistribution was set
on the observed state, a decision is made whether to fish or not. Nextequal to the mean fishery catch rate in the at-sea fishery in 1993, while
a random catch increment is generated according to a given prob-the probability of a zero catch increment and the coefficient of vari-
ability distribution. The reward is then calculated and added to pre- ation (CV) of theA-distribution were obtained from the acoustically
vious rewards. Finally, the state equations update the state to the neximeasured density of hake during the 1992 NMFS acoustic survey
step. If the next step is the final period, then the terminal reward is (Dorn etal. 1994). The purpose of this two-step process was to obtain
added to the previous rewards and the process stops; otherwise, th@ parametric probability distribution that approximated the catches
same sequence of events is repeated for the next time step. The modgler 15-min time step that would be encountered by a factory trawler
was configured to increment time in 15-min steps, which gave the in the Pacific hake fishery. For the optimization model, the
model sufficient resolution to capture the pattern of net setting, fish- distribution was discretized so that possible catch increments were
ing, and net retrieval that make up the daily schedule on a factory even multiples of the processing rate< 4.0 t/15-min time step)
trawler. from zero to 200 t. The state variablgsgndc, were discretized in the

The state of the fishing vessel at each time &tepnsists of three same way so that no interpolation was needed to update the state to
variables: the weight of unprocessed fish on boggdthe weight of the next time step.
fish currently in the netg,, and a ship status indicator variabsg, The reward per time step is the value of surimi and fish meal
which keeps track of the current activity of the vessel. Stgted, 2 produced during that time step, minus costs and penalties. The posi-
occur in sequence after the decision to retrieve the net. The secondive part of the reward is the processing rate multiplied by a conver-
state in the sequencg = 2, is needed because once the vessel begins sion factor,p, which converts raw fish weight to product value. It is
hauling back, it is committed to completing this activity during the assumed that product value does not depend on the intrinsic charac-
following time step. In statg,= 3, the vessel is able to fish, but not teristics of the fish (i.e., size or sex) or on how long the fish have been
yet doing so. In statg, = 4, the vessel is actively fishing. With these  held before processing. Although Pacific hake are highly perishable,
dynamics, the catch is added to the fish in the bins 45 min after the a vessel that processes its catches sequentially would hold fish for a
decision to stop fishing. Fish begin entering the net 15 min following maximum ofx,,,p*h (about 12 h for most factory trawlers). De-
the decision to start fishing. The state variablgandc, are observ- clines in product quality are relatively slight over this interval. The
able at each time step, implying that fish bins can be monitored peri- activity costs of the vesse{(s,, u,) depend on vessel status and on the
odically and that the vessel can monitor the catch already in the netdecisionu,. There are three different costs, a per time step cost while
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fishing, k;, a per time step cost while not fishing,;, and a per time on the Bellman optimality principle, which states that a control law

step cost while the vessel is setting or retrieving theet, that is optimal for the entire period must also be optimal starting from
Penalties can be incurred for discarded figh,and for oversize some intermediate step. It is therefore possible to solve the optimiza-

catchesy,. Discards occur only when the netis retrieved and the total tion problem for the next to last time step and then work backwards

catch is greater than the remaining space in the bins. Under currentin time toward the initial time step to obtain the optimal control law

management policy, no financial penalties are incurred by a vessel forfor the entire period. The recursive equations are given by

discarded fish. However, discard is subtracted from the quota so that

the total amount of fish available to the fishery is reduced by a corre- I= gr (),
sponding amount. Furthermore, fishermen may have other motives B B
for avoiding discard, such as ethical concerns about fully utilizing the = (% G0 59 = Max E{g(X o So U +

catch and a desire to gain advantage in political settings where deci- 8 e

sions are made about how to allocate the catch between user groups.
The penalty for oversize catches is imposed for catches above a T 0 oS L) G (oS Lo W, Sera(So T
threshold cy,.sp Large catches are hazardous to the deck crew, dam- whereJi{%,c.s) is the maximum expected reward starting atktie

age fish, and increase the likelihood of equipment failure. These time step.

would impose additional costs or reduce revenue. The net reward For the models considered in this paper the optimal control law
during a time stepy,, is given by becomes stationary as the recursive equations get further away from

. _ _ T the final step. In the results, | focus on stationary control laws rather
Ok(Xi:Cior S Ui) = g Min(pX) = K(SeUd = (i +V2) - if § =2 than time-dependent controls, which become important only when

min(p,%) — K(Sety) otherwise |itle time remains before the closure of the fishery. A stationary con-
except for the final step, wherg (x;) = px;. The penalties, andv, trol law was approached within 100—-200 time steps (~1-2 days) mov-
are incurred only when the catch is added to the fish already in the ing backwards in time before the terminal time step. However,
bins (.= 2) and are given by time-dependent controls may be important in assessing regulations,
_ it S particularly fishing closures.
vy = |:Vl(xkﬂ Xma) Xy .Xmax
otherwise Parameter values for a simple prototype
O5(C = Ciresl® i G > Cipecn To jn\(estjgate fishing strategy in the_at-sea Pacific hake fishery, the
V, = S) otherwise optimization model was configured with parameters representative of
a typical factory trawler. For this simple prototype, the random catch

wherey; andy, are penalty weights that specify the relative impor- increments were generated from a single probability distribution with
tance of the penalties for discard and oversize catches, respectivelyno serial correlation or trend. Model parameters were estimated from
The influence of these weights on decision-making will be examined observer data obtained during the 1993 at-sea fishery and from cost
later. The penalty for discardy, increases linearly with an increase and production surveys (Freese et al. 1995). Since all at-sea proces-
in discard. The penalty for oversize catchgsjs quadratic above the  sors carry observers, the observer database is a complete record of the
threshold, modeling the escalating difficulties of handling larger position, set and retrieval time, and total catch of all hauls by all
catches. The use of a quadratic function to model these difficulties vessels in the fishery. For some parameters, however, the available
was based on interviews with observers and limited personal obser-data permitted only a rough estimate of the appropriate value; in such
vations on fishing vessels. The most significant problem with large cases the sensitivity of the optimal control to the parameter value was
tows reported by fishers is the decline in product quality due to com- assessed. The following parameters were used in the prototype.

pression of fish in codends as they are hauled out of the water. (1) Total bin capacity: 200 t. Estimates of bin capacity are not
available for all factory trawlers. Two hundred tonnes is the mean of

Solving the optimization problem five bin capacities recorded by observers in the 1993 hake fishery.

Assume that the vessel fishes Totime steps, withT arbitrarily large. (2) Maximum net capacity: 160 t. The maximum of observed

The objective of the vessel is to maximize the total expected reward catches in 1993 was 161 t. Observer logbooks record instances where
over this period. The total expected rewaddas a function of the hauls 150-170 t could not be brought up the stern ramp, and some of

initial statesx,, ¢y, ands is given by the catch had to be discarded.
T (3) Processing rate: 4.0 t/15-min time step. At this processing rate
3 - + the vessel could process 384 t/day, which is the 84th percentile of the
(X0:Co:SolUo, U Uz Ur-) ko, T (%) Z 9 (% G S U catch per day during the 1993 fishery. Since daily catches should not
e k=0 greatly exceed the daily processing capacity, this processing rate is a
The expected reward will depend on the sequence of decigjpns reasonable approximation. No direct observations of factory process-
Us,..., Ur_, made over this period. To solve the optimization problem, ing rates are available.
we seek a control law, a sequence of functioAs] Lo, Ly, .-, Hr_i}, (4) Revenue per tonne of hake catch (includes both surimi and fish
wherey, defines the decision, for any vessel state at stépu,= meal): $260. (Freese et al. 1995.)
U (X.CuS). A control law is a plan of action, determined in advance, (5) Costs. An estimate of the cost of operating a factory trawler is

that specifies the decision for every possible state of the vessel. The$80 000/day ($833/time step) (Freese et al. 1995). The model pro-
optimal control lawrt* is the element of the set of feasible control laws ~ vides for three different per time step costs: a cost incurred while

I that maximizes expected reward: fishing, K;, a cost incurred while not fishing,,, and a cost incurred
while setting or retrieving the net,,. Based on fuel consumption, the
J5 (%0,C0S0) = I(X0,CoSol ) potential for equipment failure or damage, and the crew’s activity
T1 level, a ranking of the costs;; < K; < K, iS reasonable. For the simple

prototype, the values,;= 800,k; = 840, anck,,= 880 were used.

(6) Penalty weight for discards: $130. With this penalty weight, a
tonne of discard incurs a penalty equal to one half the revenue that it
where Jj{x,,c0.%) is the maximum expected reward for the entire would have produced. If Pacific hake were managed using an individ-
period. To solve this problem the dynamic programming algorithmis ual transferrable quota system (ITQ) where discards are counted
used (Bertsekas 1987). The dynamic programming algorithm is basedagainst the quota, the penalty for discard would be equal to the

= max E (x7) z 9% G S Hi)

TN w,k=0,...T-1 pars
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Fig. 3. SOC for the simple prototype. The black area indicates the
part of the state space where the optimal control is to continue
fishing and the open area indicates where the optimal control is to
begin retrieving the net. At the lower edge of the figure, the optimal
control fors =3 (able to fish but not currently fishing) is indicated.

interval, CV= 1.5). A Kolmogorov—Smirnov test (using the critical
values by Lilliefors (1967)) indicated that the logarithm of the
nonzero observations differed significantly from a normal distribu-
tion (a = 0.05). This significant result was due to the presence of
seven small nonzero values. The Kolmogorov—Smirnov test for the
logarithm of values >0.135 was not significant, and quantile—quantile
plots against a normal distribution indicated that a lognormal distri-
bution was appropriate for catch increments >0.135 t/15 min. Be-
cause rounding these smaller values down to zero does not
substantially change the mean and the C¥;distribution was con-
sidered an appropriate parametric distribution to model these data.
The probability of a zero catch increment was estimated as 367377
0.095. Conversion formulas in Pennington (1983) were used with the
CV of the acoustic data (1.5) and the mean fishery catch rate
(14.0 t/15-min time step) to obtain the mean and standard deviation
of the lognormal distribution for the nonzero part of the distribution.
The final step consisted of obtaining a discrete probability distri-
bution for catches of 0, 4, 8, ...,160 t as required by the dynamic
programming algorithm. This was obtained by summing the prob-
ability mass between the bin limits. The bin limits were located at the
midpoints of adjacent values of 0, 4, 8, ...,160 t on a log scale. The bin
boundary between zero and 4 t was arbitrarily set at 2 t. Two addi-
tional stochastic models for the catch increments are developed in
subsequent sections, a model with first-order serial correlation and a
model with diel trends. In both cases, the parameters for the model
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revenue that it would have produced. Here, some intent to avoid dis-
card is assumed, but less than would be expected under an ITQ system

(7) Penalty weight for oversize catches: $0.722. With this penalty
weight, the penalty incurred by a catch equal to the net capacity

were obtained in a similar way to the method described above, where
the expected catch increment was obtained from fishery catch rate

data, and other parameters (i.e., variance, probability of zero catches)
were estimated with acoustic survey data.

(1601t) is equal to the revenue generated by 10 t of unprocessed catch.

A catch smaller than 100 t incurs no penalty. This threshold is the

Results

93rd percentile of the observed haul weight for factory trawlers in the
1993 at-sea fishery.

Parameter values for thi-distribution of random catch incre-  Description of the stationary optimal control for a
ments were obtained from two sources: the catch rates in the 1993 simple prototype
at-sea fishery and acoustically measured densities of hake along tranThe dynamic programming algorithm for the simple prototype
sects during the 1992 NMFS acoustic survey. The best way to esti-reached a stationary optimal control (SOC) in 86 time steps
mate these parameters would be to use the catch by 15-min time step§~22 h). Decisions are possible in two ship stases,3, when
in the fishery. Collecting this information would require the installa- the vessel is not fishing, argl= 4, when the vessel is fishing.

tion of a calibrated echosounder on a fishing vessel. With the fisheries - . A . .
data that are available, catch rates can be calculated only for entir F.OrSK_ 3, the optimal control indicates the appropriate deci-

tows (total catch per haul duration). The mean of these catch rates ission Of whether to start fishing or not for each of the possible
appropriate to use for the mean of talistribution, but the Cvand ~ Pin levels. Fois = 4, the SOC divides the state space into two
the probaibility of a zero catch would be higher for 15-min time steps regions: a region where the optimal control is to continue fish-
than the catch rate for entire tows. The mean catch per 15-min timeing and a region where the optimal control is to begin retriev-
step in the at-sea fishery in 1993 during the day (06:00-20:00) (all ing the net. The fishing region occupies the quadrant of the
times are in Pacific Daylight Time) was 13.9 /15 min (G\1.18), state space where both the catch in the ogtand weight of
while at nlght the mean CatCh rate was 5.0 t/15 min (=€1/00) The - fish in the bins Kk) are low (F|g 3) The important charac-
day catch rate of 14.0 V15 min was used as the mean of the probabilityteristics of the SOC are as follows. First, there is a bin thresh-
distribution of catch increments for the basic prototype. old, such that when the weight of fish in the bins drops to the

The acoustically measured densities of hake along transects durin -
the 1992 NMFS acoustic survey were used to obtain the CV and theg[hreshold (56 tfor the simple prototype), the vessel should start

probability of a zero catch increment. These data consisted of meanfishing. Second, the upper margin of fishing region below the
acoustic densities for 1-nmi transect segments with bottom depthsbPin threshold is flat, indicating that when the catch in the net
between 150 and 600 m from 43°0Dto 48°153N (n = 377). This increases above a catch threshold (52 t for the simple proto-
region corresponded to the area where the at-sea fleet fished in 1993type), the optimal control is to cease fishing independent of the
Because mean towing speed in the at-sea hake fishery is 4.0 kn, aveight of fish in the bins. Finally, there is a notch in the fishing
vessel transits ~1 nmi in 15 min. Mean acoustic densities were con-region where the weight of fish in bins is low and the catch in
verted to nominal catches for 15-min time steps by assuming that athe net is between 24 and 52 t. The notch causes the vessel to
midwater trawl captures all the fish in the water column and calculat- ratrieve the net before reaching the catch threshold and pro-
ing the area swept by a net with 90-m horizontal opening in 1 nmi of \ie5 aqditional protection against running out of fish to pro-
trawling. Because fishing is not random within the area where thefcess

fishery operates, this approach may misrepresent the distribution o .

potential catch increments. However, out of the limited alternatives . 1€ sensitivity of the SOC to model parameters was exam-

available, this method was considered to be the most reliable. ined by obtaining the SOC for a range of values for a particular
The empirical distribution of acoustic hake densities was right- parameter with all the other parameters held constant. Sensi-

skewed and contained 7.7% zero observations (nve&ad t/15-min tivity to the following parameters was examined: the penalty
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Fig. 4. Sensitivity of SOC to the model parameters. The lower edge of each figure indicates the optimal cogtroBfahe main part of the

figure indicates the optimal control fgg = 4. The top panels show the SOC for a range of penalties on oversize catches (>100 t) with all other
model parameters held constant. The middle panels show the SOC for a range of values for the costs of fishing, not fishing, and setting or
retrieving the net. The bottom panels show the SOC for a range of discard penalties. Parameter values used to obtain these figures are given in
Table 2.
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for oversize catches, the cost differences between not fishing,Table 2. Ranges of parameter values used to examine the
fishing, and setting/retrieval, and the penalty for discard sensitivity of the optimal control to key parameters.
(Table 2). The general characteristics of the SOC are robust to

variation in these parameters (Fig. 4). In particular, the bin Low Baseline High
threshold is extremely robust to variation in parameter values. Oversize catch penalty 0.361 0.722 1.444
Changes in the penalty for oversize catches primarily affect Cost per time step contrast K, =810  K;=880 Ky =960
the catch threshold. With a large oversize catch penalty, the Ky =800  Ky=800 Ky =800
vessel adopts a more cautious strategy and does not fill the ne Kr=805 k=840 k=880
as full before retrieval (top panels in Fig. 4). However, the Discard penalty 0.0 130.0 260.0

change in catch threshold is relatively modest, with a differ-
ence of about 20 t between the low penalty and the high pen-
alty. When cost differences are small, the vessel incurs little vessels have a higher bin threshold and fill their nets fuller
additional costs for setting and retrieving the net, resulting in before retrieving, but only slightly (bottom panels in Fig. 4).

a very low catch threshold. Change in the relative costs of These results suggest that concern over discarding has a minor
different activities has a substantial effect on the catch thresh-effect on the SOC.

old (middle panels in Fig. 4). As the cost differences increase,  Next, the response of a vessel following the SOC to changes
the vessel waits until the net is fuller before retrieving it. This in the mean and variance of catch rates was examined. As the
would reduce amount of time spent setting and retrieving the mean catch rate increases, the region of the state space where
net, and thus avoid the higher cost of these activities. The rangethe optimal control is to continue fishing shrinks in size. The

of discard penalties between zero and the monetary value ofbin threshold decreases to less than 50 t for a catch rate of
the discarded fish had little influence on the SOC. A low dis- 21 t/interval (top panels in Fig. 5). The catch threshold also
card penalty expands the fishing region, but mostly in a part decreases as the mean catch rate increases. As a result, the
of the state space that would not be visited in a forward simu- vessel spends less time actively fishing when the catch rate
lation of the state dynamics. With a low discard penalty, the is high. In a more realistic setting, a vessel could use this
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Fig. 5. Effect of changes in the mean and CV of the catch rate on the SOC. The top panels show the SOC for a range of mean catch rates with

the CV fixed at 1.5. The bottom panels show the SOC for a range of CVs with the mean catch rates fixed at 14.0 t/15 min.
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additional time by searching for other high-density aggrega- a smaller time step in the model might allow the vessel more
tions so that the catch rate would continue to be high in sub- control over its catch, but the vessel would still have to decide
sequent hauls. When catch rates are low, the vessel must spendhether to continue fishing before knowing what it would
all its time fishing and would have little time to seek out higher catch in the next time increment.
density aggregations. Changes in catch rate variance strongly Frequency distributions and pairwise scatterplots of haul
affect the catch threshold (bottom panels in Fig. 5). Higher weight, haul duration, and haul interval (time between succes-
variance (as measured by the CV of the catch rate) produces aive tows) for a 20 000 time step simulation of the SOC were
decrease in the catch threshold. The bin threshold remains staexamined to determine the haul characteristics of a vessel fol-
ble as variance in the catch rate changes, suggesting that it iSowing the optimal control (Fig. 6). The haul weight frequency
determined by the expected catch rate and not by its variancedistribution shows a peak just above the catch threshold of 52 t
and an extended right tail to the distribution (Fig. 6A). Very
Forward simulation of the optimal control few tows less than the catch threshold occur in the forward
A forward simulation model of the state dynamics was con- simulation. Haul durations for the forward simulation ranged
structed to examine the behavior of a vessel following the between 0.25 and 2.75 h and showed a symmetrical distribu-
optimal control (Mangel and Clark 1988). The state dynamics tion (Fig. 6B). The haul intervals (time between tows) ranged
and parameters were the same as those used in the optimizatiobetween 1.0 and 9.8 h and had a mean of 3.2 h (Fig. 6C). The
model. In addition, the optimal decision table as a function of distribution of haul intervals is also right-skewed, but does not
vessel state was provided to the model. The model was startedshow a sharp minimum. A haul interval of 1 h is the minimum
with x5= 0, ¢;= 0, 5= 3 and run forward with the vessel possible time, and it occurs when the vessel starts fishing im-
following the SOC. To describe the typical path through the mediately. This occurred in ~4% of all the hauls made in the
state space, consider a vessel that is not fishing, but has 100 forward simulation. Above the catch threshold of 52 t, the haul
in its bins. Its path will be to the left along the bottom margin intervals increased approximately linearly with increasing
of the state space (Fig. 3). When the bin level drops to 56 t, the haul weight (Fig. 6D). As haul weight increases, more time is
vessel starts fishing and starts moving upwards in the staterequired to reduce the amount of fish in the bins to the bin
space as catch increments are added to the catch already in théhreshold. Because the vessel uses a catch threshold to decide
net. When the catch in the net exceeds ~52 t, the vessel rewhen to retrieve the net, haul weights appear independent of
trieves the net over two time steps and returns to the bottomhaul duration (Fig. 6E). Since the basic stochastic assumption
margin of the state space. The simulated vessel cannot catclof the model is that the catch per time increment is a random
52 t exactly because the decision to continue fishing must bevariable, without the optimal controller adjusting effort
made before the random catch increment is added to the catclii.e., haul duration), there would be a positive relationship be-
in the net. A vessel may have more control over its catch thantween catch and effort. Haul intervals are inversely related to
results from a discrete time model with 15-min time steps. haul duration (Fig. 6F). When a short-duration haul is emptied
Nevertheless, the Markov decision process approach requiresnto the holding bins, the total amount of fish in the bins will
the use of a discrete time model, and the use of a 15-min timebe considerably above the level that triggers fishing, so the
step in the model is a reasonable level of accuracy to studyvessel does not begin fishing immediately. However, if haul
decisions relating to setting and retrieving the net. The use ofduration is long, the bin level will be substantially below the
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Fig. 6. Summary graphs for a 20 000 step forward simulation of the SOC: (A) frequency distribution of haul weight; (B) frequency distribution
of haul duration; (C) frequency distribution of haul interval; (D) scatterplot of haul interval versus haul weight; (E) scatterplot of haul weight
versus haul duration; (F) scatterplot of haul interval versus haul duration. The values for the scatterplots were jittered.
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threshold when the netis emptied. As a result, the total amountfishing behavior, there should be some correspondence be-
of fish in the bins will not greatly exceed the bin threshold, and tween a simulation of the optimal control strategy and the

so the vessel will quickly begin fishing again. qualitative fishing patterns of fishing vessels.
One of the most important predictions of the model that can
Comparison with at-sea observer data be assessed with at-sea observer data is the presence of a catch

There are considerable obstacles to comparing the simulatedhreshold. Frequency distributions were compiled for haul
optimal control with the statistics of fishing vessels. During a weights in the 1993 fishery during the daylight hours
fishing season, a vessel will adjust its fishing strategy to chang- (06:00-20:00) when the vessel traveled less than 50 km before
ing circumstances. A vessel may encounter fish at different starting the next haul, and the time between hauls was less than
mean densities rather than at a single mean density, as wa8 h. These criteria were applied to exclude hauls whose prop-
assumed by the optimization model. The higher level aspectserties might reflect diel changes in fishing strategy or changes
of fishing strategy (patch selection and exploratory fishing) in behavior related to movement to new fishing grounds. Fre-
will affect the vessel catch statistics in ways that are difficult quency distributions of haul weight for individual factory
to predict. Fishing vessels have different maximum bin capaci- trawlers usually showed a left-truncated distribution with few
ties and processing rates and use different nets. Their fishingsmall values (Fig. 7). The range of catch thresholds was from
strategy would likely vary because of these differences. Nev- 40 to 70 t and corresponded well to the model predictions.
ertheless, if the model captures some fundamental aspects oMost haul weight distributions showed a scattering of points

© 1998 NRC Canada



Dorn 189

Fig. 7. Frequency distributions of haul weight for six factory trawlers in the 1993 at-sea Pacific hake fishery. Vessels were given random codes
to preserve confidentiality.
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below the catch threshold. These hauls would not have oc-processing rates obtained in this way ranged from 2.9 to
curred if the vessel had followed a strict catch threshold strat- 4.9 t/15 min for the six vessels. The frequency distributions of
egy. One potential explanation is that vessels adjusted theirnominal bin levels when the vessel decided to start fishing
catch threshold in response to changes in fish density. Later inshowed a right-truncated distribution (Fig. 8). This suggests
this paper, | examine whether serial correlation in catch se-that there is an upper limit to the amount of fish in the bins
qguences would produce simulated haul weight distributions when the vessel starts fishing. These thresholds ranged from
with this characteristic. 60 to 100 t, higher than the bin threshold of 56 t for the SOC.
Since observers do not record the amount of fish in holding In forward simulations, very few hauls were started when the
bins, it is not possible to examine directly whether fishing bin level was below the threshold, yet apparently this occurs
vessels use a bin threshold to decide when to start fishing.frequently to fishing vessels, suggesting that vessels have more
However, it is possible to address this issue in an indirect way difficulty keeping bin levels above the threshold than occurs
by assuming a nominal processing rate, keeping track of thein the basic prototype. One possibility for this discrepancy is
derived amount of fish in the holding bins by adding in the that the probability model for catch increments does not ade-
catches and subtracting the nominal processing rate, and requately represent the distribution of catch increments in the
cording the bin levels when the vessel starts to fish. This pro- fishery.
cedure was done using data from six factory trawlers for the  Frequency distributions and pairwise scatterplots of haul
first 10 days of the 1993 fishery. At the start of the season, no weight, haul duration, and haul interval (time between succes-
vessel would have fish onboard, so the initial state was known. sive tows) for all factory trawlers in the 1993 at-sea fishery
Catches were added to the fish in the bins 45 min after the (Fig. 9) correspond to those for the SOC simulation (Fig. 6).
recorded start of net retrieval. An estimate of the nominal pro- As with Fig. 7, only the daytime catches where the vessel trav-
cessing rate was obtained by stepping through a range of proeled less than 50 km to the next tow were selected as appro-
cessing rates and selecting the processing rate that satisfied thpriate for comparison with the SOC simulation.
following criteria. First, the maximum tonnes onboard should Although combining the catch statistics for different vessels
not greatly exceed 200 t, since most vessels have a bin capacitpbscures the catch thresholds for the individual vessels, a ten-
of ~200 t. Second, the nominal processing rate should notdency for most of the hauls to be greater than 40 t is apparent
result in the factory being out of fish to process a high propor- in the frequency distribution for all factory trawlers (Fig. 9A).
tion of time (i.e., greater than 15% of the time). The nominal The haul weight distribution has a long right tail of large
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Fig. 8. Frequency distributions of bin levels when starting to fish for six factory trawlers in the 1993 at-sea Pacific hake fishery. Vessels were
given random codes to preserve confidentiality.
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catches similar to the haul weight distribution for the simulated intervals and vice versa. This also corresponds to the statistics
SOC. Haul duration averaged about 2.0 h with a scattering of for the simulated SOC.
tows of longer length (Fig. 9B). The haul intervals showed a
different frequency distribution than the SOC (Fig. 9C). There Rye of thumb decision algorithms and the shape of the
is a sharp peak in the distribution at 1.0-1.5 h, indicating that  reward surface
vessels frequently started fishing again soon after retrieving aTphe SOC is a bin and catch threshold strategy plus some refine-
net. This does not occur as often in the SOC simulations. A ments. A bin and catch threshold strategy is the following: start
reviewer suggested that fishers may be genuinely risk-aversefishing when the weight of fish in the binssx tonnes and stop
about running out of fish to process and begin fishing sooner fishing when the weight of fish in the netiy tonnes. Kareiva
than is optimal under assumption of risk-neutrality. Another gt g|. (1989) used the term “rule of thumb” for decision-
possibility is that the cost of running out of fish is higher than making algorithms that foragers might plausibly use. Such al-
is assumed in the model. gorithms may perform nearly as well as an optimal strategy
The pairwise scatterplots generally show similar patternsto and may have other advantages such as simplicity, ease of
the scatterplots for the simulated SOC. Haul interval ianeaSESCa|cu|ati0n’ and robusthess. For the foraging pr0b|em exam-
with haul weight above ~50 t (Fig. 9D). This pattern suggests ined in this paper, a bin and catch threshold strategy could be
that vessels base the decision when to begin fishing on thecalled a rule of thumb fishing strategy. Note that this strategy
amount of fish in the bins, since otherwise, there would be no is obtained by abstracting the most important characteristics of
relationship between haul interval and haul weight. The haul the optimal control into a simple set of rules. Simulation of
duration versus haul weight plot (Fig. 9E) shows no increase these rule of thumb strategies can address two related ques-
in haul weight with haul duration, similar to the statistics for tions: (1) how well do these algorithms perform relative to the
the simulated SOC. This is a strong indication of decision- SOC and (2) how sensitive is the reward (daily net revenue) to
making based on the amount of catch in the net, since haulthe decision-making algorithm. For example, it may be possi-
weight would be expected to increase with haul duration with ble to obtain most of the potential reward with many different
a random distribution for the catch increments. There is an decision algorithms. If the reward is not particularly sensitive
inverse relationship between haul duration and haul interval to the decision-making algorithm, this could explain differ-
(Fig. 9F), such that longer tows are followed by shorter haul ences in fishing strategy between vessels.
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Fig. 9. Summary graphs for observer data collected on factory trawlers during the 1993 Pacific hake fishery: (A) frequency distribution of haul
weight; (B) frequency distribution of haul duration; (C) frequency distribution of haul interval; (D) scatterplot of haul interval versus haul
weight; (E) scatterplot of haul weight versus haul duration; (F) scatterplot of haul interval versus haul duration. A lowess smooth (Chambers
and Hastie 1992) was fit to each scatterplot to bring out the trend in the data.
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Forward simulations of rule of thumb strategies were used roughly the same size for each of the three catch rates, but its
to generate contour plots of net revenue for three different Jocation depends on the catch rate. When the catch rate is low
mean catch rates (7.0, 14.0, and 21.0 t/15 min). A grid of all (left panel of Fig. 10), maximum revenues occur at high catch
possible combinations of bin and catch threshold strategies inand bin thresholds. When the catch rate is high (right panel of
increments of 4 tr{ = 41 catch levelsc 51 bin levels= 2091) Fig. 10), higher revenues occur at lower catch and bin thresh-
was used. For each bin and catch threshold pair, the mearvlds. This pattern is similar to that for the SOC. A bin and catch
revenue was obtained from 20 simulations of 2000 time steps, threshold strategy that yields close to maximum revenue at one
so that each pointin the grid was based on simulations roughly catch rate may not perform as well at other catch rates. Other
equivalent to 20 vessels following that strategy for a 20-day bin and catch threshold strategies perform well regardless of
fishery opening for Pacific hake. the catch rate. Strategies that are robust to mean catch rates are

The region of the reward surface where bin and catch favorable strategies because fishers typically will not know the
threshold strategies attain greater than 90% of the net revenuenean catch rate before starting to fish. The region of overlap
of the SOC is fairly broad for each of the mean catch rates between the flat-topped portions of the reward surfaces iden-
(Fig. 10). The flat-topped portion of the reward surface is tifies strategies that are robust to changes in mean catch rate.
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Fig. 10.Reward surfaces for rule of thumb decisions consisting of combinations of bin and catch thresholds for three different mean catch
rates. The lowest contour line is where mean daily net revenue is zero. Succeeding contours show the net revenue for the rule of thumb
strategy as a proportion of the mean net revenue for the SOC. The highest contour line is where the daily net revenue is 90% of the mean net
revenue for the SOC.
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For example, a bin and catch threshold strategy of a bin thresh- A A-distribution with mean 14 and CV= 1.5 was gener-
old of 100 t and a catch threshold of 50 t performs well regard- ated for each row in the probability transition matrix. Then the

less of the mean catch rate. probabilities of zero and nonzero catch were adjusted so that
the transition probabilities matched those estimated from the
A model with correlated catch increments acoustic data. Simulations of the correlated catch increment

To add serial correlation to the sequence of catch incrementsmodel show a random pattern of high-density aggregations
the technique of state augmentation was used (Bertsekasurrounded by low-density regions. After the vessel decides to
1987). In a Markov model for serial correlation, the additional begin fishing, the catch increment for the first time step does
state variable required is the random catch increment in thenot enter the net because of the time required to set the net. In
previous time stewy,_;. This variable is assumed to be observ- the serial correlation model, the probability distribution for this
able by the fishing vessel, which should be possible using netinitial catch increment is strictly positive (i.e., no zero catch
telemetry. For the simple prototype presented earlier, the sto-increments) because a fishing vessel would be unlikely to in-
chastic part of the model was a single discrete probability dis- itiate fishing activities without first detecting fish with the
tribution, priv), giving the probability of catch increments echosounder.
from zero to 160 t in 4-t increments. For the serial correlation ~ Because of the simple structure to the transition prob-
model, the stochastic component is a probability transition ma- abilities, the SOC has two basic patterns, a strategy when the
trix, pr(ww,_,), that gives the probability of catch increments vessel is in the low-density region and a strategy when the
from zero to 160 t given the catch increment in the previous vessel is fishing in an aggregation. When serial correlation is
time step from zero to 160 t. incorporated into the state dynamics, the SOC changes in the
Since factory trawlers are unable to make sharp turns while following ways. First, the bin threshold increases from 64 t for
trawling, serial correlation in the sequence of catch incrementsa noncorrelated model (based on the stationary probability
should be similar to the spatial correlation of fish densities density function to the probability transition matrix) to a
along straightline transects. Consequently, the transition prob-threshold of 76 t for the correlated catch increment model
abilities for the correlated catch increment model were derived (Fig. 11). Second, when the vessel is in the low-density state,
from the density of hake along acoustic transects during thethe region of the state space where the optimal control is to
1992 NMFS acoustic survey. The objective in obtaining a fish becomes smaller, so that the vessel ceases fishing opera-
probability transition matrix was to keep the correlation struc- tions sooner. For example, if the vessel has between 36 and
ture as simple as possible, yet still capture the most important56 t in the net, and the vessel encounters a low-density region,
characteristics of the hake spatial pattern as it relates to fishingit immediately retrieves the net. If there is less than 36 tin the
strategy. To estimate the transition probabilities, hake densitiesnet, the vessel will fish longer before retrieving the net (until
for 1-nmi transect segments (15 min of towing by a factory ~24 t remains in the bins) because the vessel has a probability
trawler) were considered as either a part of a low-density re- of 0.29 of encountering another aggregation. At higher levels
gion (<3.0 t/nmi) or a part of a hake aggregation (>3.0 t/nmi) of serial correlation, the SOC is always to cease fishing imme-
(3.0 t was used because the mean catch rate in the fishery igliately if the vessel leaves the aggregation.
about 1.5 times the mean acoustic density, and 2.0 t was the Forward simulations of the SOC for correlated catch incre-
boundary between catch increments of zero and 4 t used inments show a catch threshold in the frequency distribution of
obtaining the discrete probability distribution). The transition haul weights similar to that for the random catch increment
probabilities wergyy=0.71,py; = 0.29,p,0= 0.17, andp,; = model (Fig. 12). However, a scattering of tows smaller than
0.83, where, for exampley,, is the probability of a positive  the catch threshold occurred when the vessel moved from an
catch increment given a zero catch increment in the previousaggregation to a low-density region. Thus, serial correlation in
time step. catch increments could explain the occurrence of small tows
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Fig. 11.SOCs for models with random and serially correlated catch increments: (A) SOC for random catch increment model; (B) SOC for
correlated catch increment model when the vessel is in the low-density region; (C) SOC for correlated catch increment model when the vessel
is in the high-density region.
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Fig. 12.Frequency distribution of haul weight in a forward simulation of the SOC for models with random catch increments and correlated
catch increments.
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in the observer data, which did not occur in the simple proto- aggregations coincides with the dusk movement of macro-
type with random catches. A reviewer suggested that the smallzooplankton, including euphausiids, the primary prey of Pa-
haul weights in the observer data may also be due to uncer-cific hake. The transitions between day and night distribution
tainty in the estimation of the amount of fish that have accu- patterns occur in about an hour at dawn and dusk.

mulated in the net, so that the net is occasionally retrieved with  To include this diel pattern in the model, a variable for the
less fish than is expected. There were also more short haultime of day (discretized into 96 states of 15-min duration) was
intervals with the correlated catch increment model. The vesselincluded in the state space. To complete the model, the state
began fishing in the shortest possible time (60 min) in 11% of dynamics and a probability distribution of catch increments for
all tows in the forward simulation of correlated catch incre- each of these possible times are needed. To model the state
ment model, but in only 4% of tows for the model without dynamics, the counter for the time of day is simply incre-
serial correlation. This also agrees more closely with at-seamented by 1 from 1 to 96 and then returns to 1. Catch distri-

observer data, where haul intervats.5 h were common. butions from factory trawlers in the 1993 hake fishery were
used to obtain the mean catch rate by time of day. From 06:30
Diel trends in catch rate and the effect of a ban on night to 19:30, a mean catch increment of 14.0 t/15 min was used,
fishing and from 20:30 to 05:30, a mean catch increment of

The diel pattern in fishery catch rates is caused by the behavior4.0 t/15 min was used. The dawn and dusk transitions occurred
of Pacific hake. During the day, Pacific hake form aggregations linearly in 1 h between the mean day and night catch rates. The
that occupy a distinct layer 10—20 m thick. This layer ranges in A-distributions were generated using the methods described in
depth from 100 to 300 m and may be close to the bottom on thethe simple prototype section for each period. The CV and the
continental shelf or in midwater off the shelf. At dusk, these probability of a zero catch were the same as the basic prototype
aggregations break up as hake disperse to begin actively feedand did not vary through the day.

ing. Usually there is a vertical component to their movement.  The SOC was obtained for two models, a model where night
At night, hake can be found from the surface to 300 m with no fishing was allowed and a model where fishing was prohibited
discernable pattern of aggregation. The breakdown of hakebetween midnight and 07:00. A ban on night fishing was easily
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Fig. 13.Bin and catch thresholds for Markov decision process
models with and without night fishing (between midnight and

Can. J. Fish. Aguat. Sci. Vol. 55, 1998

Fig. 14.Mean tonnes in holding bins in a forward simulation of the
SOC with and without night fishing.
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the mean catch increment decreases at nightfall. The catch
150 1 threshold without night fishing shows a similar pattern, except
— ——  Night fishing for a larger increase (to ~100 t) at nightfall.
:g’ ---------- No night fishing In forward simulations of the SOC with and without night
S 100 A fishing, the changing catch and bin thresholds through the day
&J’:i cause an increasing trend in the mean amount of fish onboard
= starting from a minimum at dawn and reaching a maximum at
= dusk (Fig. 14). During the night, the mean amount of fish in
2 950 1 holding bins decreases. The rate of decrease is more rapid and
O sustained when night fishing is prohibited. One interesting re-
sultis that even when fishing is allowed through the night, the
0 d tendency is for the fishing vessel to curtail its fishing activities

0 5 10 15

during the period when the catch rate is low. Apparently, ves-

20 sels should fish just enough at night to ensure that the fish in
holding bins will supply the factory through the night to day-
break when catch rates increase again. Since more time is
needed to catch an equivalent amount of fish at night, the cost
per tonne of catch is higher at night than during the day.

The forward simulations of the SOC with and without night
modeled by reducing the decision setufg= 0 from 23:15 to fishing and a rule of thumb strategy of a 100-t bin threshold
07:00 (the additional 45 min before midnight gave the vessel and a 50-t catch threshold were compared with observer data
time to get the net on deck). The SOC for the nonfishing state from the 1992 fishery (when night fishing was prohibited) and
(s.= 3) specifies the appropriate bin threshold by time of day. the 1993 fishery (when night fishing was allowed). This rule
The SOC for the fishing states(= 4) is three-dimensional,  of thumb strategy was also compared because in previous
with bin level, catch level, and time of day as the three dimen- simulations without a diel trend in catch rates, this strategy
sions. The general pattern of the SOC at each time of day isproduced a large percentage of the potential yield regardless
similar to simpler models already analyzed. The top edge of of the mean catch rate. Models with and without night fishing
the fishing region is usually flat-topped, resulting in a catch result in a peak of fishing activity in the morning, a period of
threshold that is independent of the amount of fish in holding lower activity during the day, followed by an increase at dusk
bins. As with the simpler models, there is a notch in the fishing (Fig. 15A). An examination of hourly vessel activity for the
region where catch is high and bin level is low that provides 1992 and 1993 fisheries also indicates that a peak in vessel
additional protection against running out of fish in the factory. activity occurs in the morning when fishing opens (Fig. 15D).
A plot of bin and catch threshold by time of day (Fig. 13) However, the peak is much higher in both SOCs. In the 1993
captures most of the pattern of the SOC and avoids having tofishery data, the proportion of time spent actively fishing is
show many plots to characterize the SOC. For the SOC with highest in the early hours of the morning whereas the SOC
night fishing, the bin threshold peaks at ~150 t in the early predicts a decrease in fishing effort early in the morning. This
evening (around 20:00) and then declines to a minimum at suggests that vessels may not vary their bin threshold through
dawn. When night fishing is closed, the bin threshold is higher the day as predicted by the SOC. The rule of thumb strategy
throughout the day and peaks at ~190 t in the early evening.followed throughout the day shows a closer match to the pro-
The catch threshold for the model with night fishing is between portion of time spent fishing in the 1993 fishery data
50 and 60 t during the day and then increases to ~80 t when(Fig. 15A).

Time of day (h)
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Fig. 15.(A) Proportion of the time actively fishing for forward simulations of the SOC with and without night fishing and a rule of thumb
(ROT) strategy; (D) proportion of the time actively fishing for factory trawlers in the 1992 fishery (night fishing banned) and 1993 fishery
(night fishing allowed); (B and C) mean haul weight and haul duration by time of day for forward simulations of the SOC with and without
night fishing and an ROT strategy; (E and F) mean haul weight and haul duration by time of day for factory trawlers in the 1992 and 1993
at-sea fisheries.
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The diel trends in haul weight for the SOC (with and with- duration for the SOC increases substantially at night whereas
out night fishing) are generally similar to the fishery data for the corresponding fishery data show less of an increase. The
the corresponding conditions (Figs. 15B and 15E). Mean haul 1993 fishery data more closely resemble the rule of thumb
weight is highestimmediately before dusk because it is advan-strategy than the SOC. When night fishing is banned, haul
tageous to wait until catch rates decline before retrieving the duration begins to increase at dusk but then declines as vessels
net. When night fishing is allowed, both the SOC and the fish- retrieve their nets to comply with the midnight closure. This
ery data show a decline in haul weight from dusk to midnight pattern is seen in both the SOC and the 1992 fishery data.
and then a gradual increase through the day. When night fish-  The mean revenue per day in simulations of vessels follow-
ing is banned, the pattern is similar for both the SOC and the ing different strategies depicts the change in profitability of a
fishery data, except for a more rapid decline in haul weight factory trawler when night fishing is prohibited. When night
after dusk due to vessels retrieving their nets to comply with fishing is prohibited, a vessel following the SOC can still attain
the midnight closure. Both the simulated SOCs and the ob- a large fraction (~98%) of the potential daily net revenue
server data show an increase in haul duration at night (Table 3). The most significant difference when night fishing
(Figs. 15C and 15F). When night fishing is allowed, haul is banned is that the mean discard increases from 1.7 to
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Table 3. Mean daily costs and revenue for a 50 000 step forward simulation of the SOC when the mean catch increment follows a
diel pattern. (The rule of thumb (ROT) strategy is to use a 100-t bin threshold and a 50-t catch threshold throughout the day.)

SOC with SOC without ROT with ROT without

night fishing night fishing night fishing night fishing
Total catch per day (t) 383.8 3815 380.2 3215
Gross revenue per day ($) 99 780 99 199 98 840 83584
Costs per day ($) 80 087 79936 80 557 79572
Discard penalty —278.6 -1094.2 -376.4 -184.7
Discard per day (t) 1.7 6.8 2.4 1.2
% discard 0.45 1.76 0.62 0.36
Oversize catch penalty -813.4 -998.7 —648.6 -568.5
Net revenue per day ($) 19 693 19 263 18 282 4012

6.8 t/day. This is because the vessel must fill its holding bins such that the net would be retrieved with fewer fish in it than
closer to capacity before fishing is closed for the day, running if the vessel remained in a high-density region throughout the
the risk of catching too many fish. However, discard rates still tow. The model with diel variation in catch rates caused the
remain low, less than 2%, and a manager might be willing to vessel to adjust bin and catch thresholds through the day to
accept this higher level of discard to reduce salmon bycatch stockpile fish during the daylight hours when the catch rate is
rates. The rule of thumb strategy works well with night fishing high and then to cut back on fishing at night when the catch
(93% of the mean daily revenue of the SOC), but the perform- rate is low and fishing is less profitable. With a ban on night
ance of this rule of thumb strategy degrades substantially whenfishing, vessels accumulated fish to a greater extent during the
night fishing is closed (21% of mean daily revenue of the day, but daily net revenue did not decline significantly.
SOC). This suggests that the simpler rule of thumb strategy  Diel patterns in the fishery data for 1992 and 1993 were
may be adequate when night fishing is allowed, but that the most consistent with a rule of thumb strategy consisting of a
vessel may be compelled to adopt a diel strategy of stockpiling fixed bin and catch threshold rather than the optimal strategy
fish during the day when night fishing is banned. of stockpiling fish during the daylight hours. However, the
performance of this rule of thumb strategy degraded substan-
tially in simulations when night fishing was closed. The ability
Discussion and conclusions to accommodate a daily shutdown of fishing operations would
depend on the bin capacity of the vessel. Vessels with smaller
. : e mE 2 hin capacities may have been be more adversely affected by
increment was generated from a single probability distribution, the night closure than vessels with larger bin capacities. Issues

showed that the optimal controls generally consist of a bin - : .
; . of fairness and equity should be addressed when regulations
threshold and a catch threshold. The bin threshold signals the, uch as the night closure in 1992 are proposed. These issues

vessel to start fishing and the cajtch threshold S|'gnals the vessej;vere not obvious prior to conducting this research.
to stop fishing. Although the optimal controls displayed some . ) . . .
sensitivity to key parameters of the model, basic characteristics Since th_e model was m_tentlonally_ Kept S'mp"? to emphasize
of the optimal controls were unchanged. Further analysesthe essential charqct_erlstlcs of the time-allocation probler_n on
showed how vessels adjust these controls in response tdactory trawlers, fishing vessels may have more behavioral
changes in the mean and variance of the sequence of catc{€Xibility than the model allows. One example of this flexi-
increments entering a net in the water. An exploration of rule Pility is “short wiring,” where a vessel partially retrieves the
of thumb strategies showed that the reward surface is flatin the€t 0 thatitis no longer actively fishing. The vessel maintains
region of the optimal control. As a result, fishing vessels trawling speed so the fish already captured cannot escape. In
should have considerable flexibility in selecting simple strate- the context of the Markov decision process model, allowing
gies that generate nearly as much net revenue as the optimay€Ssels to short wire expands the decision segferl, when
controls. Observer data on haul size, haul duration, and haulthe vesselis retrieving the net. Rather than being compelled to
interval recorded during the 1993 at-sea fishery were consis-MoVve to states= 2, as the model now requires, the vessel
tent with model results showing that fishing vessels should Would have the option of remaining in this state. Limited per-
manage their fishing operations using bin and catch thresholdsSonal observations suggest that short wiring is a fairly common
to maximize net profits. The wide range of catch and bin strategy among factory trawlers in the Pacific hake fishery.
thresholds evident in the data is consistent with the conclusion Short wiring is helpful because it allows the vessel to reserve
obtained by modeling rule of thumb strategies that vesselsits catch until there is room in holding bins to receive the fish.
have considerable flexibility in selecting strategies. Experimentation with a model where fishing vessels were al-
Two elaborations of the simple prototype, a model with lowed to short wire suggested that vessels would only short
serially correlated catch increments and a model with diel vari- wire when retrieving the net would result in discard, i.e., when
ation in catch rates, presented the vessel with a more complex* Cc> Xmax This suggests that short wiring may help vessels
and realistic environment. The resulting optimal controls ac- manage their discard.
commodated that complexity in intuitively reasonable ways. =~ The model developed in this paper also assumes that the
The model with serial correlation showed that the vessel factory processing rate is constant. In reality, a vessel can ad-
should have a lower catch threshold in the low-density region, just its processing rate by shutting down a production line or

The analysis of the simple prototype, where the random catch
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reducing the number of factory workers. There may also be arare. However, all nonhake species are typically discarded.
random component to the processing rate due to unpredictableHigh-grading is the discard of marketable fish to leave space
equipment breakdowns. Machinery for surimi processing op- for higher valued fish. In the Pacific hake fishery, high-grading
erates most efficiently when supplied with a continuous flow would be unlikely to occur because all marketable hake can be
of fish, and there may be significant startup costs when restart-processed into surimi, which has the same value no matter the
ing a production line after a long shutdown. A strategy to re- size of the fish used to produce it.

duce the processing rate would only be used when catch rates Gillis et al. (199%) contended that only with high-grading
are low and there is some risk of running out of fish. Because does discard occur at the discretion of the fishers. However,
vessels in the at-sea hake fishery are all competing for thethey are concerned only with decision-making that occurs after
fishery-wide quota, vessels with low catch rates would be a haul is brought onboard. The operational models developed
strongly motivated to search for higher densities of fish rather in this paper suggest that discarding should be viewed within
than adjust their processing rate downwards. Consequently the context of the entire set of decisions that leads to the dis-
the ability of the vessel to modify its processing rate is unlikely card. The analysis of these models indicate that capacity-
to have a large influence on the general results obtained in thisdiscarding can occur as an indirect result of decisions made
paper. before the discard occurs, but that influence the probability

An additional assumption of the model is that product value that discard will occur. Factory trawlers can maximize net
does not depend on the length of time the fish have been heldrevenue by keeping the factory continually supplied with fish.
To model changes in product value over time would require If they start to fish when they already have a substantial
additional state variables and decision options and would sub-amount of fish in bins (i.e., a strategy with a large bin thresh-
stantially increase the complexity of the SOC. For example, old), there is a high probability that they will be able catch
the vessel may decide to discard fish held too long to produceenough fish to refill the bins before they become empty. How-
top-grade surimi, a decision that is not now an option in the ever, vessels following this strategy would have a higher risk
model. Although holding time is an important factor in deter- of capacity-discarding, since they may occasionally catch so
mining the grade of surimi, potential decreases in product many fish that they have no space in the bins to hold them. The
value probably do not play a significant role in decision- strategy adopted by the fishing vessel can put it in a situation
making at the time scales addressed in the model. Surimiwhere discarding is unavoidable. If the penalty for discard
grades are based on color and gel strength. The gel strength ofvere to be increased, as would occur if the fishery were man-
Pacific hake increases for up to 6 h after landing due to stiff- aged with ITQs and discard was subtracted from the vessel's
ening of the muscle tissue, and in pollock fisheries, the fish are quota, vessels would adopt a strategy to avoid those situations.
typically “aged” for several hours before processing. Price dif- However, some discard during the fishing season may be un-
ferences for surimi of different grades fluctuate depending on avoidable due to the stochastic nature of fishing and the spatial
the market, but typically the price range between top-grade and temporal overlap between economically valuable fish and
surimi and second-grade surimi is 5-10%. those species with little or no economic value.

Pacific hake held for less than about 10 h in holding bins,  Although observers in the hake fishery do not record the
or for less than 24 h in refrigerated seawater tanks, producetype of discard, they do estimate the total discard by a vessel.
top-grade surimi (Gregory Peters, Oregon State University Discard is difficult to monitor by observers because it is epi-
Seafood Laboratory, Astoria, Oreg., personal communica- sodic in nature and can occur in more than one location on the
tion). About one third of the at-sea fleet has refrigerated sea-vessel. The estimated discard of hake in the factory trawler
water tanks; the rest of the fleet stores unprocessed fish infleet declined from 5.5% in 1992 when night fishing was
holding bins. For the simple prototype, 1.0% of the fish were banned to 3.8% in 1993 when night fishing was allowed. This
held longer than 10 h before processing in forward simulations decline in discard corresponds to the model prediction of lower
of the optimal control (mean holding tin¥e3.6 h). For the diel discard when night fishing is allowed. However, this decrease
model with night fishing, 1.4% of the fish where held longer in discard from 1992 to 1993 occurred within the context of a
than 10 h (mean holding time4.3 h). However, with a night  trend of decreasing discard since the large-scale fishery started
closure on fishing, 9.5% of the fish are held longer than 10 h in 1991. Consequently, it is impossible to separate the effect
before processing. This suggests that under normal conditionsof the ban on night fishing on discard from the trend of increas-
(i.e., without a night closure or an equipment breakdown), a ing efficiency as the factory trawler fleet becomes more pro-
vessel would be unlikely to lose revenue due to a decrease inficient at fishing for hake. An intriguing conclusion from the
product value. Although a ban on night fishing could reduce night fishing analysis is that a management action designed to
product value, it is not obvious how a vessel could change its control one problem, the bycatch of salmon, can have conse-
strategy to improve product value, since all the fish processedquences that are difficult to predict and may be as undesirable
during the 7-h night closure must be caught earlier in the day. as the problem the management action was intended to correct.

Gillis et al. (199%) described three types of discarding on A potential benefit of the modeling techniques developed in
commercial fishing vessels: capacity-discarding, exclusion- this paper is the ability to predict consequences of management
discarding, and high-grading. Capacity-discarding is discard- actions before implementing them. However, the data needed
ing because the vessel has no room in holding bins for the catcHo parameterize and test operational models of fishing are not
and is the kind of discard that occurs in the model developed routinely collected. As the regulatory environment under
in this paper. Exclusion-discarding is discarding when the spe-Wwhich fisheries operate becomes increasingly restrictive, there
cies or the size of the fish has no economic value. Since juve-is an ongoing need to monitor fishing behavior, develop new
nile hake occur mostly off California, south of where the models, and test the predictions of those models.
fishery operates, exclusion-discarding of undersized hake is The Markov decision process model developed in this
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paper is a projection of the general foraging problem of a fish- for simplifying and generalizing successful strategies. Consid-
ing vessel into one-dimensional time. While the fishing vessel eration of rule of thumb strategies provides a broader perspec-
contends with time-allocation problems, it also has to contend tive than can be obtained by studying only the optimal
with the spatial aspects of foraging, as in deciding where to solutions to decision process models.

start the next haul. When the vessel has found a large-scale

aggregation of hake and can obtain an acceptable catch rate
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